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Abstract

In this study, a six-dimensional Lorenz model (6DLM) is derived, based on a recent
study using a five-dimensional (5-D) Lorenz model (LM), in order to examine the im-
pact of an additional mode and its accompanying heating term on solution stability.
The new mode added to improve the representation of the steamfunction is referred to5

as a secondary streamfunction mode, while the two additional modes, that appear in
both the 6DLM and 5DLM but not in the original LM, are referred to as secondary tem-
perature modes. Two energy conservation relationships of the 6DLM are first derived
in the dissipationless limit. The impact of three additional modes on solution stability
is examined by comparing numerical solutions and ensemble Lyapunov exponents of10

the 6DLM and 5DLM as well as the original LM. For the onset of chaos, the critical
value of the normalized Rayleigh number (rc) is determined to be 41.1. The critical
value is larger than that in the 3DLM (rc ∼24.74), but slightly smaller than the one
in the 5DLM (rc ∼42.9). A stability analysis and numerical experiments obtained us-
ing generalized LMs, with or without simplifications, suggest the following: (1) negative15

nonlinear feedback in association with the secondary temperature modes, as first iden-
tified using the 5DLM, plays a dominant role in providing feedback for improving the
solution’s stability of the 6DLM, (2) the additional heating term in association with the
secondary streamfunction mode may destabilize the solution, and (3) overall feedback
due to the secondary streamfunction mode is much smaller than the feedback due to20

the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM
is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different
roles for small-scale processes (i.e., stabilization vs. destabilization), consistent with
the following statement by Lorenz (1972): If the flap of a butterfly’s wings can be in-
strumental in generating a tornado, it can equally well be instrumental in preventing a25

tornado. The implications of this and previous work, as well as future work, are also
discussed.
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1 Introduction

Fifty years have passed since Lorenz published his breakthrough modeling study
(Lorenz, 1963) which changed our view regarding the predictability of weather and cli-
mate (e.g., IPCC, 2007; Pielke, 2008), laying the foundation for chaos theory (e.g., Gle-
ick, 1987; Anthes, 2011). Since the degree of nonlinearity is finite in the original Lorenz5

model referred to as 3DLM, the impact of increased nonlinearity on systems’ solutions
and/or their stability has been studied using generalized LMs with additional Fourier
modes (e.g., Curry, 1978; Curry et al., 1984; Howard and Krishnamurti, 1986; Her-
miz et al., 1995; Thiffeault and Horton, 1996; Musielak et al., 2005; Roy and Musielak,
2007a, b, c). However, such studies do not provide a definite answer regarding whether10

or not higher-order LMs lead to more stable solutions.
Lorenz demonstrated the association of the nonlinearity with the existence of non-

trivial critical points and strange attractors in the 3DLM. Shen (2014, denoted as
Shen14) recently discussed the importance of nonlinearity in both producing new
modes and enabling subsequent negative feedback to improve solution stability. The15

feedback loop of the 3DLM was defined by Shen14 as a pair of downscale and upscale
transfer processes associated with the Jacobian function (in Eq. 2). The feedback loop
has been suggested to stabilize the solution for 1 < r < 24.74 within the 3DLM, as
compared to the linearized 3DLM. Extending the nonlinear feedback loop in a five-
dimensional LM (5DLM) can provide negative nonlinear feedback to produce non-trivial20

stable critical points when 1 < r < 42.9. The negative nonlinear feedback represents
the collective impact of additional nonlinear terms and dissipative terms introduced by
the two additional Fourier modes of the 5DLM. In this study (and in the previous study,
Shen14), the two modes are added to improve the representation of the temperature
perturbation, referred to here as secondary temperature modes. Improved stability with25

a higher critical Rayleigh parameter was verified by linearizing the 5DLM with respect
to a non-trivial critical point and then performing a stability analysis over a wide range
of values in parameters (σ, r). The outcome was possible due to the analytical solu-
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tions of the critical points in the 5DLM (e.g., Shen14). The role of the negative nonlinear
feedback was further verified using the revised 3DLM that parameterizes the negative
nonlinear feedback to suppress chaotic responses using a nonlinear eddy dissipation
term.

In addition to the negative nonlinear feedback, Shen14 indicated that a conclusion5

derived from lower-dimensional LMs may not be applicable in all circumstances in
a higher-dimensional LM. For example, although the butterfly effect (of the first kind)
with dependence of solutions on initial conditions appears in the 3DLM within the range
between r = 25 and 40, it does not exist in the 5DLM. Therefore, to examine whether
or not small perturbations can alter large-scale structure (i.e., the butterfly effect of10

the second kind), a model containing proper representations of multiscale processes
and their nonlinear interactions is required. As a result, it would require to improve the
degree of nonlinearity to address the question.

In a pioneering study using the generalized LM with a large number of Fourier modes,
Curry et al. (1984) suggested that chaotic responses disappeared when sufficient15

modes were included. Shen14 hypothesized that system’s stability in the LMs, with
a finite number of modes, can be improved with additional modes that provide negative
nonlinear feedback associated with additional dissipative terms. However, since new
modes can also introduce additional heating term(s), the competing role of the heating
term(s) with nonlinear terms and/or with dissipative terms deserves to be examined so20

that the conditions under which solutions become more stable or chaotic can be better
understood. Results obtained from work described here and the work of Shen14 are
used to address the following question: for generalized LMs, under which conditions
can the increased degree of nonlinearity improve solution stability?

To achieve the goal outlined above, the 3DLM to 5DLM was previously extended in25

Shen14 by including the two secondary temperature modes. In this study, the 5DLM
is extended to the 6DLM by adding an additional mode. The additional mode is in-
cluded to improve the representation of the streamfunction (e.g., Eqs. 4 and 5), and
is, therefore, referred as to the secondary streamfunction mode. While the secondary
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temperature modes of the 5DLM (as well as the 6DLM) introduces additional nonlin-
ear terms and dissipative terms, which, in turn, provide negative nonlinear feedback,
the secondary streamfunction mode of the 6DLM introduces additional nonlinear terms
and adds a heating term. The approach, using incremental changes in the number of
Fourier modes, can help trace their individual and/or collective impact on solution sta-5

bility. For example, since the 6DLM also contains the negative nonlinear feedback in
association with secondary temperature modes, it becomes feasible to examine the
role of the additional heating term in solution’s stability and its competing impact with
the negative nonlinear feedback.

The presented work is organized as follows. We describe the governing equations10

in Sect. 2.1 and present the derivations of the 6DLM in Sect. 2.2. We then discuss
the energy conservation of the 6DLM in the dissipationless limit in Sect. 2.3, and nu-
merical approaches for integrations of the LMs and calculations of ensemble Lyapunov
exponents in Sect. 2.4. In Sect. 3.1, we investigate the potential impact of the addi-
tional heating term on solution’s stability by performing stability analysis near the trivial15

critical point. We also illustrate how the feedback loop can be extended using the sec-
ondary streamfunction mode. In Sect. 3.2, numerical results obtained from the 6DLM
are provided and compared to results obtained from the 5DLM. To examine the role of
the secondary streamfunction mode and to identify the major nonlinear feedback term,
additional numerical experiments using the 6DLM and simplified 6DLMs are compared20

in Sect. 3.3. Then, we discuss the dependence of the solution’s stability on the Prandtl
number (σ) in Sect. 3.4. Concluding remarks appear at the end.
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2 The six-dimensional Lorenz model and numerical methods

2.1 The governing equations

By assuming 2-D (x, z), incompressible and Boussinesq flow, the following equations
were used by Lorenz in 1963:

∂
∂t
∇2ψ = −J(ψ ,∇2ψ)+ ν∇4ψ +gα

∂θ
∂x

, (1)5

∂θ
∂t

= −J(ψ ,θ)+
∆T
H
∂ψ
∂x

+ κ∇2θ, (2)

here ψ is the streamfunction that gives the u = −ψz and w = ψx, which, respectively,
represent the horizontal and vertical velocities; θ is the temperature perturbation; and
∆T represents the temperature difference at the bottom and top boundaries. The con-
stants, g, α, ν, and κ denote the acceleration of gravity, the coefficient of thermal expan-10

sion, the kinematic viscosity, and the thermal conductivity, respectively. The Jacobian
of two arbitrary functions is defined as J(A,B) = (∂A/∂x)(∂B/∂z)− (∂A/∂z)(∂B/∂x).
Additionally,

∇4ψ = ∂/∂x(∇2∂ψ/∂x)+∂/∂z(∇2∂ψ/∂z).

For the reader’s convenience, the same symbols as those in Saltzman (1962) and15

Lorenz (1963) are used here.

2.2 The 6-D Lorenz Model (6DLM)

To generalize the original Lorenz model, we first use the following six Fourier modes
(which are also listed in Table 1 of Shen14) to derive the 6DLM:

M1 =
√

2sin(lx)sin(mz),M2 =
√

2cos(lx)sin(mz),M3 = sin(2mz), (3)20

M4 =
√

2sin(lx)sin(3mz),M5 =
√

2cos(lx)sin(3mz),M6 = sin(4mz), (4)
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here l and m are defined as πa/H and π/H , representing the horizontal and vertical
wavenumbers, respectively; and a is a ratio of the vertical scale of the convection cell
to its horizontal scale, i.e., a = l/m. The term H is the domain height, and 2H/a repre-
sents the domain width. Using these modes, ψ and θ can be represented as follows:

ψ = C1(XM1 +X1M4), (5)5

θ = C2(Y M2 + Y1M5 −ZM3 −Z1M6), (6)

C1 = κ
(1+a2)
a

,C2 =
∆T
π
Rc

Ra
,Rc =

π4

a2
(1+a2)3,R−1

a =
νκ

gαH3∆T
,

where C1 and C2 are constants, Ra is the Rayleigh number and Rc is its critical value
for the free-slip Rayleigh–Benard problem. Using Eqs. (5) and (6), solutions within the
6DLM are represented by the six spatial modes M1 to M6 (Eqs. 3-4) and their corre-10

sponding time-varying amplitudes (X ,Y ,Z ,X1,Y1,Z1), respectively. By comparison, Eq.
(3) was used to derived the 3DLM, and Eqs. (3) and (4) without M4 were used to de-
rive the 5DLM. While the 3DLM and 6DLM (5DLM) have one horizontal wavenumber,
they contain two and four vertical wavenumbers, respectively. In the text below, to facil-
itate discussions, M1 and M4 are referred to as primary and secondary streamfunction15

modes, respectively, M2 and M3 are referred to as primary temperature modes, and
M5 and M6 are referred to as secondary temperature modes. Here, the reader should
note that an implicit limitation of this approach is that nonlinear interactions among
the selected modes cannot generate (impact) any new (other) modes that are not pre-
selected, suggesting limited (spatial) scale interactions. While the impact of the sec-20

ondary temperature modes (i.e., Y1 and Z1) on the solution’s stability was discussed
by Shen14 with the 5DLM, the impact of the secondary streamfunction mode (i.e., X1),
which introduces a heating term (rX1), is the focus of the 6DLM provided here.

To transform Eqs. (1) and (2) into the “phase” space, a major step is to calculate
the nonlinear Jacobin functions. Calculations indicate that J(ψ ,∇2ψ) in Eq. (1) does25

not lead to any explicit term in the final 6DLM, or the 3DLM or the 5DLM. Here, the
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Jacobian term of Eq. (2), which is written as follows, is discussed:

J(ψ ,θ) =C1C2(XY J(M1,M2)−XZJ(M1,M3)+XY1J(M1,M5)−XZ1J(M1,M6)

+X1Y J(M4,M2)−X1ZJ(M4,M3)+X1Y1J(M4,M5)−X1Z1J(M4,M6)). (7)

Note that the 3DLM only contains the first two terms on the right hand side of Eq. (7),
namely XY J(M1,M2) and −XZJ(M1,M3), while the 5DLM includes the first four terms.5

After derivations, we obtain the 6DLM with the following six equations:

dX
dτ

= −σX +σY , (8)

dY
dτ

= −XZ +X1Z −2X1Z1 + rX − Y , (9)

dZ
dτ

= XY −XY1 −X1Y −bZ , (10)

dX1

dτ
= −doσX1 +

σ
do
Y1, (11)10

dY1

dτ
= XZ −2XZ1 + rX1 −doY1, (12)

dZ1

dτ
= 2XY1 +2X1Y −4bZ1. (13)

Here, τ = κ(1+a2)(π/H)2t (dimensionless time), σ = ν/κ (the Prandtl number), r =
Ra/Rc (the normalized Rayleigh number, or the heating parameter), b = 4/(1+a2), and
do = (9+a2)/(1+a2). After deriving the 6DLM in the fall of 2011, the 6DLM outlined here15

was compared with the work of Prof. Z. E. Musielak and his colleagues (e.g., Musielak
et al., 2005; Roy and Musielak, 2007a) who obtained the same 6DLM. A more detailed
analysis regarding how the system conserves energy in the dissipationless limit, as
well as a comparison with the 3DLM and 5DLM, is provided in the following discussion.
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The 3DLM can be obtained from the 6DLM when terms that involve (X1,Y1,Z1) are
neglected. Alternatively, Eqs. (8)–(10) can be viewed as a 3DLM with the feedback pro-
cesses that result from the three additional modes. Therefore, the 6DLM can be viewed
as a coupled system that consists of the 3DLM (Eqs. 8–10) and a forced dissipative
system with an additional heating term (e.g., Eqs. 11–13). Here, and in Shen14, un-5

less otherwise stated, the term “feedback” refers to the nonlinear process that involves
the secondary modes, namely (X1,Y1, and/or Z1). The 5DLM in Shen14 can be also
obtained by ignoring the X1 and dX1/dt in the 6DLM. As a result, the 6DLM can be
viewed as a coupled system which consists of the 5DLM and an additional equation
(i.e., Eq. 11) that introduces nonlinear feedback associated with an additional heating10

term (i.e., Eq. 12).

2.3 Energy conservation in the 6-D non-dissipative LM

The domain-averaged kinetic energy (KE), available potential energy (APE), and po-
tential energy (PE) are defined (e.g., Treve and Manley, 1982; Thiffeault and Horton,
1996; Blender and Lucarini, 2013; Shen, 2014), as follows:15

KE =
1
2

2H/a∫
0

H∫
0

(u2 +w2)dzdx, (14)

APE = −
gαH
2∆T

2H/a∫
0

H∫
0

(θ)2dzdx, (15)

PE = −
2H/a∫
0

H∫
0

gα(zθ)dzdx. (16)
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Through straightforward derivations, we obtain the following equations:

KE =
Co

2
(X 2 +doX

2
1 ), (17a)

KEp =
Co

2
X 2, (17b)

here Co = π
2κ2
(

1+a2

a

)3
. KEp contains only a portion of the total KE of the 6DLM from

the primary streamfunction mode X , but represents the total KE in the 5DLM and5

3DLM. In a similar manner, as follows:

APE = −
Co

2
σ
r

(Y 2 +Z2 + Y 2
1 +Z2

1 ), (18)

PE = −Coσ(Z +Z1/2). (19)

Equations (17a) and (18) yield the following

KE+APE =
Co

2

(
X 2 +doX

2
1 −

σ
r

(
Y 2 +Z2 + Y 2

1 +Z2
1

))
= C3, (20)10

while Eqs. (17b) and (19) lead to the following

KEp +PE = Co

(
X 2

2
−σ
(
Z +

Z1

2

))
= C4. (21)

With Eqs. (8–13) in the dissipationless limit, the time derivative of both Eqs. (20) and
(21) are zero, so both C3 and C4 are constants. Therefore, Eqs. (20) and (21) indicate

two energy conservation laws, including the conservation of the total KE and APE (i.e.,15

Eq. 20). However, it should be noted that, as follows:

KE+PE = Co

(
X 2

2
+do

X 2
1

2
−σ
(
Z +

Z1

2

))
6= constant (22)
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By comparison, the two energy conservation laws of the 5DLM are written as follows:

KE5-D +APE5-D =
Co

2

(
X 2 − σ

r

(
Y 2 +Z2 + Y 2

1 +Z2
1

))
= C5, (23)

KE5-D +PE5-D = Co

(
X 2

2
−σ
(
Z +

Z1

2

))
= C6. (24)

It can been shown that both C5 and C6 are constants. Therefore, in the 5DLM, in

addition to the conservation of the KE and APE, the KE and PE are also conserved.5

2.4 Numerical approaches

Using the 4th order Runge–Kutta scheme, the original and higher-order Lorenz models
are integrated forward in time. We vary the value of the heating parameter r but keep
other parameters as constants, including σ = 10, a = 1/

√
2, b = 8/3, do = 19/3, and

a minimum value for Rc = 27π4/4. In Figs. 1, 2,3 and 6, the initial conditions are given10

as follows:

(X ,Y ,Z ,X1,Y1,Z1) = (0,1,0,0,0,0). (25)

The dimensionless time interval (4τ) is 0.0001. The total number of time steps (N) is
1 000 000 in Fig. 1 and 500 000 in Figs. 2, 3, and 6, yielding a total dimensionless time
(τ) of 100 and 50, respectively. In Figs. 2 and 6, the solutions of the 3DLM and 5DLM15

are rescaled by the analytical solutions of their critical points, (i.e., Eqs. 21 and 19 of
Shen14). The solutions of the 6DLM are rescaled by the critical points of the 5DLM. In
Sect. 3.4, the dependence of solution stability on the Prandtl number (σ) is discussed
with selected values of (σ).

To quantitatively evaluate whether or not the system is chaotic, we calculate the Lya-20

punov exponent (LE), a measure of the average separation speed of nearby trajecto-
ries on the critical point (e.g., Froyland and Alfsen, 1984; Wolf et al., 1985; Nese, 1989;
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Zeng et al., 1991; Eckhardt and Yao, 1993; Christiansen and Rugh, 1997; Kazantsev
1999; Sprott, 2003; Ding and Li, 2007; Li and Ding, 2011). In Shen14, the two meth-
ods implemented and tested are the trajectory separation (TS) method (e.g., Sprott,
2003); and the Gram–Schmidt reorthonormalization (GSR) procedure (e.g., Wolf et al.,
1985; Christiansen and Rugh, 1997). Here, a brief summary of how LEs are calculated5

using the two methods is provided. Using given initial conditions (ICs) and a set of pa-
rameters in the LMs, the TS scheme calculates the largest LE, and the GSR scheme
produces “n” LEs; here “n” is the dimension of the 5-D or 6-D LM. Calculations are
conducted with 4τ = 0.0001 and N = 10 000 000, yielding τ = 1000. To minimize the
dependence on the ICs, 10 000 ensemble (En = 10 000) runs with the same model10

configurations but different ICs are performed, and an ensemble averaged LE (eLE)
is obtained from the average of the 10 000 LEs. A large N and En are used to under-
stand the long-term average behavior of the solutions of the LMs and simplified LMs
where some terms are ignored. While eLEs calculations using the above two methods
were previously discussed and compared in Shen14, here, a calculation of the Kaplan–15

Yorke fractal dimension (Kaplan and Yorke, 1979) using the (three) leading eLEs from
the GSR method is provided in Appendix A as an additional verification. Unless stated
otherwise in the main text, the largest ensemble-averaged LE (eLE) for a given r is
obtained from the TS method.

To examine the collective or individual impact of the nonlinear feedback terms and20

to identify the major feedback that can improve numerical predictability in the 5-D and
6-D LMs, we perform additional runs using the 6DLM with additional simplifications.
The experiments, as listed in Table 1, include the following: (1) case 6DLMS1 where
three nonlinear terms involving X1 are neglected and only one feedback term (XY1)
is retained in Eqs. (9) and (10), (2) case 6DLMS2 where only XY1 is ignored in Eq.25

(10), and (3) case 6DLMS3 where rX1 is removed from Eq. (12). Results from these
simplified 6DLMs are presented in Sect. 3.3.
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3 Discussion

In the following sections, we discuss the impact of additional modes on solution stability.
In Sect. 3.1, we illustrate the potential role of theM4 mode by performing linear stability
analysis at the trivial critical point. In Sects. 3.2 and 3.3, we present and compare
numerical results from the 6DLM with and without simplifcations to identify the major5

feedback process. The dependence of solution stability on the Prandtl number (σ) is
discussed in section 3.4.

3.1 The impact of M4 on linear stability

In this section, we first discuss the selection of M4 and then its impact. As indicated in
Shen14, the inclusion of M5 and M6 modes is based on the analysis of the Jacobian10

term, J(ψ ,θ), and can improve the representations of the temperature perturbation and
the nonlinear advection of temperature. The appearance of ∂M5/∂x associated with
the linear term ∂θ/∂x of Eq. (1) requires the inclusion of anM4 mode and the ∂M4/∂x
associated with 4T∂ψ/∂x of Eq. (2) provides feedback to the M5 mode (in Table 1
of Shen14). The M4 mode shares the same horizontal and vertical wave numbers as15

the M5 but has a different phase (i.e., sin(lx) vs. cos(lx) in Eq. 4). Alternatively, via the
∂θ/∂x and 4T∂ψ/∂x, the M4 and M5 modes are linked as follows:

dX1

dτ
∝ −doσX1 +

σ
do
Y1, (26)

dY1

dτ
∝ rX1 −doY1, (27)

which can be derived by linearizing Eqs. (11) and (12) at the trivial critical point. The20

linearized equations are decoupled with the rest of the equations on the 6DLM, sug-
gesting that the heating term (rX1) can impact other modes as well as the stability of
the nonlinear 6DLM via nonlinear feedback, as discussed below. The above equations

487

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/475/2015/npgd-2-475-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/475/2015/npgd-2-475-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 475–512, 2015

A 6DLM

B.-W. Shen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

are reduced to the following:

d2Y1

dτ2
+do(σ +1)

dY1

dτ
− σ
do

(
r −d3

o

)
= 0. (28)

By assuming the solution Y1 ∝ exp(βτ), we obtain the following two roots for β:

β±(r) =
−do(σ +1)±

√
d2

o (σ +1)2 +4σ
(
r −d3

o

)
/do

2
. (29)

Here, β+ (β−) represents the larger (smaller) root. An unstable normal mode with β+ >5

0 appears when r > d3
o . When do = 1, the result in Eq. (29) can be applied to the

linearized 3DLM. As do = 19/3 and r < d3
o (∼ 254) in this study, both β+ and β− are

negative and ∂β/∂r is positive. The focus is β+ because the corresponding mode
dominates the solution as a result of a smaller decay rate as compared to β−. β+ has
a minimum (i.e., the largest decay rate) as r = 0, and increases as r increases (up to10

254), leading to a decreasing decay rate. In the limit of r = 0 and σ ≥ 1, the minima of
Eq. (29) can be written as follows:

β+(r = 0) = −do and β−(r = 0) = −doσ. (30)

The β+ = −do provides the same decay rate as the one derived directly from Eq. (27)
with r = 0 (i.e., the removal of rX1). The simple analysis indicates that the inclusion of15

M4, as a result of β+ < 0 and |β+(r 6= 0)| < |β+(r = 0)|, can lead to a solution component
with a smaller decay rate. In other words, the inclusion of rX1 effectively reduces the
dissipative impact of −doY1 in Eq. (27). Here, the reader should note that the relative
impact of r with respect to σ can be estimated using the ratio between the first and
second arguments of the radical in Eq. (29), written as 4σ(r −d3

o )/(σ +1)2/d3
o . The20

result suggests that rX1 becomes less important when a larger σ is used.
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The discussions provided above illustrate how the secondary streamfunction mode
(M4) may impact the growth rate of Y1 via the linear heating term (rX1). Additionally,
M4 can also provide its nonlinear feedback by extending the nonlinear feedback loop
of the 5DLM (as well as the 3DLM), as follows (also see Table 2 of Shen 2014):

J(M4,M2) = 2mlM6 −mlM3, (31)5

J(M4,M3) =mlM2, (32)

J(M4,M6) = −2mlM2. (33)

While Eqs. (31) and (32) form a feedback loop with M2→M3→M2, Eqs. (31) and
(33) enable another feedback loop with M2→M6→M2. Equations (32) and (33) only
contain the vertical advection of temperature due to ∂M3/∂x = ∂M6/∂x = 0. The two10

equations suggest that both M3 and M6 can provide upscaling feedback to M2 through
their interaction with M4, leading to two terms in Eq. (9), i.e., dY/dτ ∝ X1Z −2X1Z1.
When Z1 is close to Z/2, their collective impact may become insignificant, X1(Z−2Z1) ∼
0, as compared to the other terms in Eq. (9). Since the former criterion can be met near
the stable critical points of the 5DLM (e.g., Eq. 20b of Shen14) and since the 6DLM15

shares some similarities with the 5DLM, X1Z and −2X1Z1 are neglected in the 6DLMS1
whose results are discussed in section 3.3. In the next section, we first compare the
numerical results of the 5DLM and 6DLM.

3.2 Numerical results of the 6DLM

In this section, we discuss the numerical results of the 6DLM beginning with energy20

conservation laws in the dissipationless limit. The non-dissipative version of the 6DLM
(5DLM) is referred to as the 6D-NLM (5D-NLM). Figure 1 provides the time evolution
of the total domain-averaged kinetic energy and available potential energy (KE+APE)
for both the 6D-NLM (blue) and 5D-NLM (red). While the total domain-averaged kinetic
energy and potential energy (KE+PE) is shown in pink for the 5D-NLM, the kinetic25

energy of the primary streamfunction mode and the potential energy (KEp +PE) is
489

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/475/2015/npgd-2-475-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/475/2015/npgd-2-475-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 475–512, 2015

A 6DLM

B.-W. Shen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

shown in green for the 6D-NLM. Using the initial conditions in Eq. (25), the initial values
of the normalized KE+APE for the 6D-NLM (Eq. 20) and the 5D-NLM (Eq. 23) are given
as C3/Co and C5/Co, respectively, and equal to −σ/2r . C3/Co (or C5/Co) is −0.2 for

r = 25 and −0.11 for r = 45. The initial values of the normalized KEp +PE for the 6D-

NLM (Eq. 21) and the KE+PE for the 5D-NLM (Eq. 24) are given as C4/Co and C6/Co,5

respectively, and both zero. To effectively illustrate the conservation properties of the
four quantities above, the time evolution of their deviations from the corresponding initial
values produce four lines when plotted. Each of the lines may be shifted by a constant.
For example, while the red line in Fig. 1 represents the time evolution of the deviation
for KE+APE in the 5D-NLM, (i.e., KE5-D(τ)+APE5-D(τ)−KE5-D(0)−APE5-D(0)), the10

blue line with a constant shift of 0.02 represents the time evolution of the deviation for
KE+PE in the 6D-NLM, (i.e., KE(τ)+APE(τ)−KE(0)−APE(0)+0.02). As indicated in
Fig. 1, each of the four quantities is conservative.

Next, we compare the normalized solutions of (Y , Z) in the 3DLM, 5DLM, and 6DLM
with two different values of r . Normalization scales are defined by the critical points15

listed in Table 1. Figure 2a and b display the solutions from the 3DLM and 6DLM with
r = 35. Although the critical value (rc) for the onset of chaos is rc = 24.74 in the 3DLM
(Lorenz, 1963), a larger value is chosen for comparison with the 6DLM. The solution of
the 3DLM never reaches a steady state but oscillates irregularly with time surrounding
the non-trivial critical points. In contrast, as indicated by the converged trajectory that20

approaches a critical point which is close to (Y/Yc, Z/Zc) = (−1,1), the 6DLM yields
a steady state solution. Note that the normalization scales, Yc and Zc, are the critical
points of the 5DLM, because it is difficult to obtain the analytical solution of the critical
points in the 6DLM and the former and latter share similarities as discussed later. The
6DLM continues to generate steady state solutions until r is beyond 41.1 (as discussed25

in Fig. 4). With an r value of 42.0, the 6DLM leads to a chaotic solution with a “butterfly”
pattern in Y-Z space (Fig. 2d), while the 5DLM still produces a stable solution (Fig. 2c).
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In the following, we discuss the time evolution of the solutions for the 5DLM and
6DLM to examine the impact of the secondary modes on solution’s stability and to
identify the major feedback associated with these modes. First, we analyze the dZ/dτ
(e.g., Eq. 10 for the 6DLM and Eq. 12 of Shen14 for the 5DLM) for the cases using
r = 35 that have steady-state solutions. Figure 3 indicates that all of the terms with the5

exception of X1Y , in the dZ/dτ of the 6DLM, yield comparable results to their coun-
terparts in the 5DLM, indicating that XY1 also plays an important role in stabilizing the
solution of the 6DLM as compared to the 5DLM. While the negative feedback by XY1
was verified by parameterizing its impact as a nonlinear eddy dissipation term into the
3DLM in Shen14, further verification using the 6DLM is provided in the following sec-10

tion. Due to a small value of X1, the X1Y is small as compared to other terms. A small
value of X1 could also be inferred from the steady-state solution to Eq. (11), giving
X1 = Y1/d

2� Y1 as do = 19/3. Additionally, the time evolution of the XY suggests that
a steady state in the 5DLM is reached earlier than it is in the 6DLM, consistent with the
decay rate analysis in Sect. 3.1.15

Figure 4 provides the analysis, used to determine the critical value of r for the onset
of chaos for both the 5DLM and 6DLM, of the eLEs as a function of the normalized
Rayleigh paramter r . Both models produce similar distributions of the eLEs for 35 ≤ r ≤
50, with the following features: (1) within the stable region (as eLEs< 0), the magnitude
of the eLEs is relatively smaller in the 6DLM, (2) the 6DLM requires a slightly smaller20

r (rc ∼ 41.1) for the onset of chaos than the 5DLM (rc ∼ 42.9); and (3) in fully chaotic
regions (e.g., r > 44), the eLEs of the 5DLM and 6DLM are in good agreement, with
very small differences. The first two results are consistent with the stability analysis
provided in section 3.1, suggesting that inclusion of the M4 mode in the 6DLM may
reduce the dissipative impact associated with the M5 mode.25

3.3 Numerical results of the simplified 6DLMs

In this section, we analyze the eLEs of the 6DLM with or without additional approxima-
tions to identify the major feedback term and the impact of M4 in the 6DLM. While the
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6DLM has four non-linear feedback terms (X1Z and −2X1Z1 in Eq. 9; and −XY1 and
−X1Y in Eq. 10), the 5DLM only has one term, −XY1. Nonlinear feedback terms are
defined as the nonlinear terms involving the secondary modes (X1, Y1, and Z1). There-
fore, comparable eLEs between these two LMs suggest that −XY1 may play the most
significant role in providing feedback for stabilizing solutions in the 6DLM. To verify this5

hypothesis, additional experiments are performed with the following simplified 6DLMs:
6DLMS1, 6DLMS2 and 6DLMS3, as introduced in Sect. 2.4 and listed in Table 1. While
the 6DLMS1 case retains only one nonlinear feedback term, XY1, the 6DLMS2 case
only neglects this term. By comparison, the 6DLMS3 case is designed to examine the
role of the linear heating term (rX1) in Eq. (12). The corresponding eLEs are shown in10

Figure 5. The eLEs of the 6DLMS2 resemble those of the 3DLM (Fig. 5a) with the ex-
ception of the window regions, indirectly indicating the importance of XY1 in stabilizing
the solutions in the 6DLM. With the exception of the transition regions from eLEs < 0
to eLEs > 0 over a small range of r (i.e., r ∼ 41−43), the eLEs of the 6DLMS1 and
6DLMS3 are close to those in the 6DLM and 5DLM. The rc of these two cases are15

determined to be 42.3 and 42.1, respectively, which are slightly larger (smaller) than
rc = 41.1 (rc = 42.9) for the 6DLM (5DLM), as shown in Fig. 5b. In addition, the mag-
nitudes of the LEs in the stable regions are determined to be relatively larger (smaller)
than those in the 6DLM (5DLM). Since the 6DLMS1 ignores the nonlinear feedback
terms associated with the X1 and since the 6DLMS3 neglects the rX1 term, the fea-20

tures of the 6DLMS1 and 6DLMS3, as compared to the 6DLM, also indicate that the
impact of the M4 may slightly destabilize solutions.

The eLEs represent the averaged behavior of the model’s solutions over a very large
time scale, so N = 10 000 000 and T = N4t = 1000 (e.g., the T in Eq. 23 of Shen14
should approach infinity) are used. Since some of terms in the simplified LMs (e.g.,25

6DLMS1-3) are ignored, it is important to check the time evolution of the solutions on
a finite-time scale in order to understand if and how the solutions approach a stable crit-
ical point, or oscillate rapidly between (unstable) non-trivial critical points. To this end,
we examine the r-time diagram of the normalized solutions in Fig. 6, which displays the
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primary mode, −Y/Yc, and secondary mode, −Y1/Y1c, from the 6DLM, 6DLMS1, and
6DLMS3. Here, Yc and Y1c are the analytical solutions of the critical points from the
5DLM. Using this approach, the deviation of the normalized solutions from one (i.e.,
−Y/Yc −1) indicates the impact of the M4 mode that is missing in the 5DLM. In Fig. 6,
the sharp gradient of the solutions with dense contour lines near the constant value of5

r = 43 (in black) roughly indicates the critical value of r for the onset of chaos, consis-
tent with the analysis of the eLEs in Fig. 5 (see Table 1). In stable regions, the primary
mode, −Y/Yc, evolves with time and comes within 1±0.01 in each of the three cases
(Fig. 6a, c, and e). For the 6DLMS1 that only includes one nonlinear feedback term
(XY1), the values of the secondary mode, −Y1/Y1c, in stable regions are also within10

1±0.01 (Fig. 6d). By comparison, the normalized solutions (−Y1/Y1c) for the 6DLM
and 6DLMS3 are within 1 and 0.9 in the steady state, suggesting a deviation within
10% from the corresponding critical point of the 5DLM. If we view the stable solutions
of the 5DLM as the results of the control run, the 6DLM provides approximate steady-
state solutions that have derivations of only around 1 % in Y and approximately 10 %15

in Y1. The above results indicate that the nonlinear terms associated with the X1 (i.e.,
M4 mode) may produce larger relative deviations in the secondary mode Y1 (a high
wavenumber mode) than in the primary mode Y (a low wavenumber mode).

By comparing the 3DLM and 5DLM, Shen14 suggested that the stability of solu-
tions in the 3DLM can be improved by the negative nonlinear feedback through the20

term (−XY1), enabled by the secondary temperature modes (Y1 and Z1) in the 5DLM.
The result motivated an examination of whether or not a higher-dimensional model is
more stable or less chaotic (i.e., a larger critical value of r) than a lower-dimensional
model. In this study, the comparison of the 5DLM and 6DLM indicates that the addi-
tional mode (M4) in the 6DLM does not help increase but slightly decreases the critical25

value of r for the onset of chaos. In other words, the inclusion of M4 provides posi-
tive feedback that destabilizes the solutions through the heating term (e.g., rX1 in Eq.
12) and/or through its nonlinear interaction with other modes. Based on the results ob-
tained from the 5DLM and 6DLM, we have demonstrated the roles of secondary modes
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(i.e., small-scale processes) in stablizing and destabilizing system’s solutions. In addi-
tion, the collective impact of these secondary modes on the improvement of solution’s
stability have been examined. Since the aforementioned results are obtained from the
LMs with a fixed value of σ = 10, the dependence of the stability in the 6DLM on various
values of σ is discussed in the next section.5

3.4 Dependence of stability on σ

Previous sections discussed the stability problem only by varying the heating parame-
ter, r . Here, we examine the dependence of solution stability on the parameter σ, and
address the question of whether or not the 6DLM still requires a smaller (larger) rc
for the onset of chaos than the 5DLM (3DLM) when different values of σ are used. To10

efficiently achieve the goal, we conduct the eLE analysis for the 6DLM using selected
values of σ, and compare it with that from the 5DLM. The dependence of the 5DLM’s
stability on σ were previously examined by Shen14 by performing both linear stability
and eLEs analyses.

For comparisons, the results obtained from the stability analysis of the 5DLM and15

3DLM in Shen14 are briefly summarized as follows: in Fig. 7, pink and black lines indi-
cate the contour lines of the Re(λ) = 0 in the (σ, r) space for the linearized 3DLM and
5DLM, respectively. Since λ is the largest eigenvalue, each line describes the critical
value r l

c as a function of σ, where the superscript “l” of r l
c indicates the local (or linear)

analysis. Following each of the contour lines in the direction of increasing σ, its right20

(or left) hand side contains areas with negative (or positive) values of Re(λ), suggest-
ing stable (or unstable) solutions. Therefore, unstable solutions (Re(λ) > 0) appear as
r l
c < r . Solid circles with the same color scheme indicate the rc determined using the

eLE analysis with selected values of σ, σ = 10, 13, 16, 19, 22 and 25. Given a σ, rc
is, in general, smaller than r l

c in both the 3DLM and 5DLM, as previously documented25

(see Shen14 for additional details).
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The rc of the 6DLM, with the eLE analysis, is shown in Fig. 7 with blue multiplica-
tion signs. For all of the selected cases, the critical value rc in the 6DLM is larger than
that in the 3DLM, suggesting that over the range between σ = 10 ∼ 25, the 6DLM re-
quires a larger r for the onset of chaos than the 3DLM. By comparison, in each of
the selected cases with σ = 10, 13, 16, and 19, the critical value (rc) in the 6DLM is5

(slightly) smaller than the one in the 5DLM. As a result, the 6DLM is less stable than
the 5DLM as 10 ≤ r < 22. However, for the case with σ = 22 (or σ = 25), the rc of the
6DLM is comparable (or slightly larger), as compared to that of the 5DLM. The results
may indicate a different role for the M4 mode between σ < 22 and σ > 22, or suggest
the importance of increasing the ensemble members and/or increasing the coverage10

of the initial conditions for the calculations of the eLEs, all of which are subject to future
study.

4 Concluding remarks

Five- and six-dimensional Lorenz models (5DLM and 6DLM) were derived here and in
Shen14 to examine the impact of additional modes on solution’s stability. The 5DLM15

includes two new Fourier modes (i.e., the secondary temperature modes M5 and M6)
that introduce the additional nonlinear and dissipative terms. The 6DLM is a super set
of the 5DLM, and contains one more Fourier mode (i.e., the secondary streamfunction
mode M4) that introduces additional nonlinear terms and adds a heating term. The
individual and collective impacts of these terms on solution stability were investigated.20

The 5DLM and 6DLM have comparable critical Rayleigh parameters for the onset of the
chaos, and the parameters are larger than that of the 3DLM. Based on the calculations
of the ensemble averaged Lyapunov exponents (eLEs), the critical value rc for the
6DLM (5DLM) with σ = 10 is approximately 41.1 (42.9). Therefore, while the solution
of the 3DLM becomes chaotic when r ranges from 25 to 40, the 6DLM (5DLM) still25

produces stable steady-state solutions, suggesting that predictability can be improved
by the increased degree of nonlinearity.
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A quantitative comparison of the eLEs from the generalized LMs with or without addi-
tional simplifications suggests the following: (1) The negative nonlinear feedback, first
identified in the 5DLM and represented by XY1 in both the 5DLM and 6DLM, plays
a dominant role in providing feedback for stablizing the solution in the 6DLM, (2) The
additional heating term (rX1) associated with theM4 mode may destabilize the solution5

in the 6DLM which has a smaller rc as compared to the 5DLM. The stability analysis
provided in Sect. 3.1 indicates that the heating term rX1 may effectively reduce the
dissipative effect associated with the M5 mode, and, in turn, provides effective “pos-
itive” feedback through the nonlinear feedback loop, (3) as a result of much smaller
values in the X1, the induced destabilization (by the additional heating term) is much10

smaller than the induced stabilization (by the negative nonlinear feedback term). Ad-
ditionally, two nonlinear feedback terms associated with M4 nearly cancel one another
(e.g., Eqs. 32 and 33). Therefore, the rc of the 6DLM is only slightly smaller than that
of the 5DLM. The 5DLM and 6DLM collectively illustrate the different roles of various
high-wavenumber modes in stablizing or destabilizing system’s solutions. Additional15

analyses on mathematical derivations and numerical results are summarized below.
As compared to the 3-D and 5-D LMs in the dissipationless limit, the 6-D non-

dissipative LM also poses two energy conservation relations. One states the conser-
vation of the total domain-averaged kinetic energy (KE) and available potential energy
(APE), enabling the transfer between KE and APE. The results is consistent with the20

result in the 3-D and 5-D non-dissipative LMs. In contrast, the additional conservation
law only provides the conservation of the domain-averaged kinetic energy associated
with the primary streamfunction mode (KEp) and the total domain-averaged potential

energy (PE), instead of the total KE and PE, as compared to the 3DLM and 5DLM. The
two conservations do pose constraints on all six modes of the 6DLM. However, the25

potential issues (e.g., whether inconsistent forcing may exist) are beyond the scope of
the present study.
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The competing impact of the nonlinearities and the dissipation and heating terms
can be illustrated using Eq. (10) of the 6DLM, as follows:

dZ
dτ

= XY −XY1 −X1Y −bZ .

The first nonlinear term (XY ) and the linear term (bZ) can act as a forcing and dissi-
pative term, respectively, in the 3-D, 5-D, and 6-D LMs. The second and third nonlinear5

terms (XY1 and X1Y ) are introduced as additional dissipative terms by the new modes.
X1Y is much smaller than the other terms, and XY1 can help reach a balance with XY
and bZ to stabilize the solution. The negative nonlinear feedback by XY1 was first il-
lustrated by Shen14 for the 5DLM. However, the feedback by XY1 in the 6DLM may be
(slightly) different from that in the 5DLM. Specifically, while XY1 of the 5DLM includes10

the feedback associated with additional nonlinear and dissipative terms, XY1 of the
6DLM includes the feedback from the additional nonlinear and heating terms such as
rX1.

The above results provide different impacts associated with various secondary
modes, consistent with Lorenz’s statement in 1972, as follows: If the flap of a but-15

terfly’s wings can be instrumental in generating a tornado, it can equally well be instru-
mental in preventing a tornado. The quote suggests the appearance of both positive
and negative feedbacks (i.e., stabilization and destabilization) in association with vari-
ous “small-scale” processes. Since mode truncation is unavoidable in finite-resolution
models, the answer to the question of whether or not the feedback by new modes is20

positive or negative should be made in the proper context. The approach outlined here
may help us understand why some generalized LMs have a larger rc, while others have
a smaller rc as compared to the 3DLM. For example, among the five different general-
ized LMs in Tables 1 and 2 of Roy and Musielak (2007c), the two LMs that include M5
and M6 have a rc of ∼ 40−42, comparable to the rc in the 5DLM (6DLM) outlined here.25

The Θ2(1,3) and Θ2(0,4) modes in Roy and Musielak (2007c) are the same as the M5
and M6 modes in this study. In addition, the 14D LM, with a comparable rc (rc ∼ 43.48)
described by Curry (1978), also includes these two modes Θ2(1,3) and Θ2(0,4), and
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does not have a vertical wavenumber higher than that of Θ2(0,4). In contrast, the 5-
D LM of Roy and Musielak (2007b), which has a smaller rc (rc ∼ 22.5), does include
an additional heating term, although the two additional modes are different from the
secondary modes of the 5DLM and 6DLM in this study. Although preliminary analyses
seem encouraging, however, detailed comparisons with other generalized LMs (e.g.,5

Howard and Krishnamurti, 1986; Hermiz et al., 1995; Thiffeault and Horton, 1996) are
still required.

The 5DLM and 6DLM share some similarities regarding the system’s stability, but
the 6DLM has one additional model. To further our understanding of the dynamics of
chaos, it is required to address if and where additional critical points may appear and10

impact solution’s stability in the 6DLM. Due to increasing difficulties in obtaining the
analytical solutions of the critical points for the 6DLM, it becomes more challenging to
perform an analysis near the critical points. In addition to the analysis for examining
the competing impact between the additional dissipative and heating terms, the de-
pendence of solution’s stability on the time scale (i.e., duration) of the “forcing” terms15

deserves additional attention. Results obtained in this study indicate eLE dependence
on the number of modes (i.e., different resolutions) and resolved processes (i.e., dis-
sipative terms or heating term). To improve our confidence in the model’s long-term
climate projections using high-resolution global weather or climate models, it is impor-
tant to understand whether and how the long-term stability (eLE) in the global models20

may be influenced by the change of a model’s grid spacing as well as the resolved
“forcing” associated with different physics parameterizations. Achieving this goal re-
quires the extension or revision of the TS method for eLE calculations in the global
models, likely performed in future studies.

Appendix A: Fractal dimension of the 6DLM25

Various methods are available for calculating fractal dimensions (Grassberger and Pro-
caccia, 1983; Nese et al., 1987; Zeng et al., 1992). The method used to calculate the
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so-called Kaplan–Yorke dimension (Dky) is discussed here. The Kaplan–Yorke dimen-
sion is defined as follows (Kaplan and Yorke, 1979; Nese et al., 1987):

Dky = K +

∑K
i=1LEi
|LEK+1|

, (A1)

where LEi is the i th Lyapunov exponent, and K (≤ n) is the largest integer for
which

∑K
i=1LEi ≥ 0. Dky = 0 as LE1 < 0 and Dky = n as

∑n
i=1LEi > 0. In this study, “n”5

ensemble-averaged Lyapunov exponents (eLEs), which are produced using the GSR
method (e.g., Shen14), are used to estimate the corresponding Dky. The summation
of all eLEs is provided in Fig. A1a, where −13.667, −30.667, and −94 are the val-
ues for the 3DLM, 5DLM and 6DLM, respectively; and are consistent with the stability
analysis. For example, in the 6DLM, the summation of all eLEs should be equal to10

−(σ +1+b+doσ +do +4b). The three leading eLEs for the 3DLM, 5DLM and 6DLM
are provided in Fig. A1b. The corresponding fractal dimension obtained using the eLEs
is provided in Fig. A2. For r = 28, the leading eLEs of the 3DLM are (0.892743×10+0,
−0.701148×10−3, −0.145587×10+2), which results in Dky = 2.06127208. The value
is very close to the value of 2.063 documented in Nese et al. (1987, p. 1957), and the15

value of 2.062 reported by Prof. Sprott (http://sprott.physics.wisc.edu/chaos/lorenzle.
htm). Here, the reader should note that the 2nd eLE is very small but not exactly equal
to zero, indicating the impact of the 10 000 different initial conditions.
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Table 1. A list of numerical experiments for different Lorenz models. The column “Modifications”
indicates additional changes in the “Equations”. The rc and r l

c are determined based on the
eLEs analyses and the linear stability analysis, respectively. Solutions in “Figures” are rescaled
using the factors listed in the “Scaling factors”. ∗ for the 3DLM, the ensemble averaged LE is
1.2×10−2 at r = 23.7, and becomes 0.26 at r = 24. The 5-D and 6-D non-dissipative Lorenz
models (5D-NLM and 6D-NLM) are used to examine the energy conservation properties.

Case IDs Equations Modifications Figures rc r l
c Scaling factors

3DLM Eqs. (15)–(17) N/A 2 23.7∗ 24.74 Eq. (21)
of Shen14 of Shen14

5DLM Eqs. (10)–(14) N/A 2–5, 7 42.9 45.94 Eq. (19)
of Shen14 of Shen14

6DLM Eqs. (8)–(13) N/A 2–7 41.1 N/A same

6DLMS1 Eqs. (8)–(13) ignoring terms that 5–6 42.3 N/A same
involve X1 in Eqs. (9) and (10)

6DLMS2 Eqs. (8)–(13) ignoring the term 5–6 23.9 N/A same
−XY1 in Eq. (10)

6DLMS3 Eqs. (8)–(13) ignoring the term 5–6 42.1 N/A same
rX1 in Eq. (12)

5D-NLM Eqs. (10)–(14) ignoring dissipative terms 1 N/A N/A N/A
of Shen14

6D-NLM Eqs. (8)–(13) ignoring dissipative terms 1 N/A N/A N/A
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Figure 1. Time evolution of energy conservation laws from the 5D-NLM and 6D-NLM. (KE+PE)
and (KE+APE) are displayed for the 5D-NLM, while (KEp +PE) and (KE+APE) are shown for
the 6D-NLM. (a) and (b) are for r = 25, and r = 45, respectively. All fields are normalized using

the constant Co
(
= π2κ2

(
1+a2

a

)3
)

, and each of the above lines is shifted to the summation of

the corresponding initial value and a constant value (e.g., 0.06 in the green line).
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Figure 2. (Y , Z) plots in the 3DLM (a) and 6DLM (b) with r = 35; and 5DLM (c) and 6DLM (d)
with r = 42. Lorenz strange attractors appear in (a) and (d). All of the solutions are normalized
by the the corresponding critical points, namely, Eq. (21) of Shen14 for the 3DLM and Eq. (19)
of Shen14 for the 5DLM and 6DLM.
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(a) (b)

Figure 3. Forcing terms of dZ/dτ with r = 35, which are from Eq. (12) for the 5DLM of Shen
(2014) (a) and Eq. (10) for the 6DLM (b), respectively. The black and orange lines represent
XY and bZ , respectively, while the blue and red lines represent XY1 and 5X1Y , respectively.
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Figure 4. The largest ensemble-averaged Lyapunov Exponents (eLEs) as a function of the
forcing parameter r in different LMs. The eLEs with ∆r = 0.1 for the 5DLM (black) and 6DLM
(blue). The appearance of chaotic solutions is indicated by positive eLEs.
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Figure 5. Same as Fig. 4 except for (a) the 3DLM (in pink) and the 6DLMS2 (in orange); and
(b) the 6DLMS1 (in red) and 6DLMS3 (in green).
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Figure 6. The r-time diagram of numerical solutions from the 6DLM (a, b), 6DLMS1 (c, d), and
6DLMS3 (e, f). r ranges from 25 to 50 with ∆r = 0.5. (a, c, e) show −Y/Y , and (b, d, f) show
−Y1/Y1c. Yc, and Y1c, are the critical points of the 5DLM as defined in Eq. (19) of Shen14. The
black line indicates a constant value of r = 43.
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Figure 7. The rc, of the 6DLM as a function of σ. The rc, shown by blue multiplication signs (X )
are determined by the eLEs of the nonlinear 6DLM. The pink and black lines indicate a constant
contour of Re(λ) = 0 for the linear 3DLM and 5DLM, respectively, indicating the corresponding
rc, based on a linear stability analysis. Solid circles with the same color scheme indicate a rc,
determined by the eLEs analysis with ∆r = 0.1 in the corresponding nonlinear LM.
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Figure A1. Three leading ensemble averaged Lyapunov exponents (eLEs) as a function of the
normalized Rayleigh number (r) (a), and the summation of all eLEs in the LMs (b). The pink,
black, and blue lines indicate the eLEs for the 3-D, 5-D and 6-D LMs, respectively. The solid,
dotted, and dashed lines display the first, second and third eLEs, respectively. In (a), the pink,
black, and blue lines are shifted with a constant value of 13.667, 30.667+0.02 and 94.0+0.04,
respectively. To save computational resources, the eLEs of the 5-D and 6-D LMs are calculated
over a shorter range of values for r (i.e., 35 < r < 50).
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Figure A2. The Kaplan–Yorke fractal dimension of the 3-D, 5-D, and 6-D LMs as a function of
the normalized Rayleigh number (r).
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